You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

655 lines
18 KiB

/**
Copyright 2013 BlackBerry Inc.
Copyright (c) 2014-2016 Chukong Technologies Inc.
Copyright (c) 2017-2023 Xiamen Yaji Software Co., Ltd.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Original file from GamePlay3D: http://gameplay3d.org
This file was modified to fit the cocos2d-x project
*/
#pragma once
#include <cmath>
#include "math/Math.h"
#include "math/MathBase.h"
/**
* @addtogroup base
* @{
*/
NS_CC_MATH_BEGIN
class Mat4;
class Quaternion;
class Mat3;
/**
* Defines a 3-element floating point vector.
*
* When using a vector to represent a surface normal,
* the vector should typically be normalized.
* Other uses of directional vectors may wish to leave
* the magnitude of the vector intact. When used as a point,
* the elements of the vector represent a position in 3D space.
*/
class CC_DLL Vec3 {
public:
/**
* The x-coordinate.
*/
float x{};
/**
* The y-coordinate.
*/
float y{};
/**
* The z-coordinate.
*/
float z{};
/**
* Constructs a new vector initialized to all zeros.
*/
Vec3() = default;
/**
* Constructs a new vector initialized to the specified values.
*
* @param xx The x coordinate.
* @param yy The y coordinate.
* @param zz The z coordinate.
*/
Vec3(float xx, float yy, float zz);
/**
* Constructs a new vector from the values in the specified array.
*
* @param array An array containing the elements of the vector in the order x, y, z.
*/
explicit Vec3(const float *array);
/**
* Constructs a vector that describes the direction between the specified points.
*
* @param p1 The first point.
* @param p2 The second point.
*/
Vec3(const Vec3 &p1, const Vec3 &p2);
/**
* Constructs a new vector that is a copy of the specified vector.
*
* @param copy The vector to copy.
*/
Vec3(const Vec3 &copy);
/**
* Creates a new vector from an integer interpreted as an RGB value.
* E.g. 0xff0000 represents red or the vector (1, 0, 0).
*
* @param color The integer to interpret as an RGB value.
*
* @return A vector corresponding to the interpreted RGB color.
*/
static Vec3 fromColor(unsigned int color);
/**
* Destructor.
*/
~Vec3() = default;
/**
* Indicates whether this vector contains all zeros.
*
* @return true if this vector contains all zeros, false otherwise.
*/
inline bool isZero() const;
/**
* Indicates whether this vector contains all ones.
*
* @return true if this vector contains all ones, false otherwise.
*/
inline bool isOne() const;
/**
* Returns the angle (in radians) between the specified vectors.
*
* @param v1 The first vector.
* @param v2 The second vector.
*
* @return The angle between the two vectors (in radians).
*/
static float angle(const Vec3 &v1, const Vec3 &v2);
/**
* Transforms the current vector with given scale, rotation and translation in reverse order
*/
static void transformInverseRTS(const Vec3 &v, const Quaternion &r, const Vec3 &t, const Vec3 &s, Vec3 *out);
/**
* Adds the elements of the specified vector to this one.
*
* @param v The vector to add.
*/
inline void add(const Vec3 &v);
/**
* Adds the elements of this vector to the specified values.
*
* @param xx The add x coordinate.
* @param yy The add y coordinate.
* @param zz The add z coordinate.
*/
inline void add(float xx, float yy, float zz);
/**
* Adds the specified vectors and stores the result in dst.
*
* @param v1 The first vector.
* @param v2 The second vector.
* @param dst A vector to store the result in.
*/
static void add(const Vec3 &v1, const Vec3 &v2, Vec3 *dst);
/**
* Clamps this vector within the specified range.
*
* @param min The minimum value.
* @param max The maximum value.
*/
void clamp(const Vec3 &min, const Vec3 &max);
/**
* Clamps the specified vector within the specified range and returns it in dst.
*
* @param v The vector to clamp.
* @param min The minimum value.
* @param max The maximum value.
* @param dst A vector to store the result in.
*/
static void clamp(const Vec3 &v, const Vec3 &min, const Vec3 &max, Vec3 *dst);
/**
* Sets this vector to the cross product between itself and the specified vector.
*
* @param v The vector to compute the cross product with.
*/
void cross(const Vec3 &v);
/**
* Computes the cross product of the specified vectors and stores the result in dst.
*
* @param v1 The first vector.
* @param v2 The second vector.
* @param dst A vector to store the result in.
*/
static void cross(const Vec3 &v1, const Vec3 &v2, Vec3 *dst);
/**
* Multiply the elements of the specified vector to this one.
*
* @param v The vector to multiply.
*/
void multiply(const Vec3 &v);
/**
* Multiply the specified vectors and stores the result in dst.
*
* @param v1 The first vector.
* @param v2 The second vector.
* @param dst A vector to store the result in.
*/
static void multiply(const Vec3 &v1, const Vec3 &v2, Vec3 *dst);
/**
* Transforms this vector by the specified Mat3 and stores the result in this vector.
*
* @param v The Vec3 to transform.
* @param m The matrix.
*/
void transformMat3(const Vec3 &v, const Mat3 &m);
/**
* Transforms the input vector by the specified Mat4 and stores the result in this vector.
*
* @param v The Vec3 to transform.
* @param m The matrix.
*/
void transformMat4(const Vec3 &v, const Mat4 &m);
/**
* Transforms this vector by the specified Mat4 and stores the result in this vector.
* @param m The matrix.
*/
inline void transformMat4(const Mat4 &m) {
transformMat4(*this, m);
}
/**
* Transforms vector v by the specified Mat4 and stores the result in dst vector.
* @zh 向量与四维矩阵乘法,默认向量第四位为 1。
* @param v The Vec3 to transform.
* @param m The matrix.
* @param dst The destination vector
*/
static void transformMat4(const Vec3 &v, const Mat4 &m, Vec3 *dst);
/**
* @en Vector and fourth order matrix multiplication, will complete the vector with a fourth element as one
* @zh 向量与四维矩阵乘法,默认向量第四位为 0。
*/
static void transformMat4Normal(const Vec3 &v, const Mat4 &m, Vec3 *dst);
/**
* @en Calculates a new position from current to target no more than `maxStep` distance.
* @zh 计算一个新位置从当前位置移动不超过 `maxStep` 距离到目标位置。
* @param current current position
* @param target target position
* @param maxStep maximum moving distance
*/
static void moveTowards(const Vec3 &current, const Vec3 &target, float maxStep, Vec3 *dst);
/**
* Transforms this vector by the specified quaternion and stores the result in this vector.
*
* @param q The quaternion to multiply.
*/
void transformQuat(const Quaternion &q);
/**
* Returns the distance between this vector and v.
*
* @param v The other vector.
*
* @return The distance between this vector and v.
*
* @see distanceSquared
*/
float distance(const Vec3 &v) const;
/**
* Returns the squared distance between this vector and v.
*
* When it is not necessary to get the exact distance between
* two vectors (for example, when simply comparing the
* distance between different vectors), it is advised to use
* this method instead of distance.
*
* @param v The other vector.
*
* @return The squared distance between this vector and v.
*
* @see distance
*/
float distanceSquared(const Vec3 &v) const;
/**
* Returns the dot product of this vector and the specified vector.
*
* @param v The vector to compute the dot product with.
*
* @return The dot product.
*/
float dot(const Vec3 &v) const;
/**
* Returns the dot product between the specified vectors.
*
* @param v1 The first vector.
* @param v2 The second vector.
*
* @return The dot product between the vectors.
*/
static float dot(const Vec3 &v1, const Vec3 &v2);
/**
* Computes the length of this vector.
*
* @return The length of the vector.
*
* @see lengthSquared
*/
inline float length() const;
/**
* Returns the squared length of this vector.
*
* When it is not necessary to get the exact length of a
* vector (for example, when simply comparing the lengths of
* different vectors), it is advised to use this method
* instead of length.
*
* @return The squared length of the vector.
*
* @see length
*/
inline float lengthSquared() const;
/**
* Negates this vector.
*/
inline void negate();
/**
* Normalizes this vector.
*
* This method normalizes this Vec3 so that it is of
* unit length (in other words, the length of the vector
* after calling this method will be 1.0f). If the vector
* already has unit length or if the length of the vector
* is zero, this method does nothing.
*/
void normalize();
/**
* Get the normalized vector.
*
* @return normalized vector.
*/
Vec3 getNormalized() const;
/**
* Scales all elements of this vector by the specified value.
*
* @param scalar The scalar value.
*/
inline void scale(float scalar);
/**
* Sets the elements of this vector to the specified values.
*
* @param xx The new x coordinate.
* @param yy The new y coordinate.
* @param zz The new z coordinate.
*/
inline void set(float xx, float yy, float zz);
/**
* Sets the elements of this vector from the values in the specified array.
*
* @param array An array containing the elements of the vector in the order x, y, z.
*/
inline void set(const float *array);
/**
* Sets the elements of this vector to those in the specified vector.
*
* @param v The vector to copy.
*/
inline void set(const Vec3 &v);
/**
* Sets this vector to the directional vector between the specified points.
*
* @param p1 The vector to subtract.
* @param p2 The vector to subtracted.
*/
inline void set(const Vec3 &p1, const Vec3 &p2);
/**
* Sets the elements of this vector to zero.
*/
inline void setZero();
/**
* Subtracts this vector and the specified vector as (this - v)
* and stores the result in this vector.
*
* @param v The vector to subtract.
*/
inline void subtract(const Vec3 &v);
/**
* Subtracts the specified vectors and stores the result in dst.
* The resulting vector is computed as (v1 - v2).
*
* @param v1 The first vector.
* @param v2 The second vector.
* @param dst The destination vector.
*/
static void subtract(const Vec3 &v1, const Vec3 &v2, Vec3 *dst);
/**
* Get the maximum value in the vector
*
* @param v1 To be compared vector.
* @param v2 To be compared vector.
* @param dst The destination vector.
*/
static void max(const Vec3 &v1, const Vec3 &v2, Vec3 *dst);
/**
* Get the minimum value in the vector
*
* @param v1 To be compared vector.
* @param v2 To be compared vector.
* @param dst The destination vector.
*/
static void min(const Vec3 &v1, const Vec3 &v2, Vec3 *dst);
/**
* Updates this vector towards the given target using a smoothing function.
* The given response time determines the amount of smoothing (lag). A longer
* response time yields a smoother result and more lag. To force this vector to
* follow the target closely, provide a response time that is very small relative
* to the given elapsed time.
*
* @param target target value.
* @param elapsedTime elapsed time between calls.
* @param responseTime response time (in the same units as elapsedTime).
*/
void smooth(const Vec3 &target, float elapsedTime, float responseTime);
/**
* Linear interpolation between two vectors A and B by alpha which
* is in the range [0,1]
*/
inline Vec3 lerp(const Vec3 &target, float alpha) const;
/**
* Calculates the sum of this vector with the given vector.
*
* Note: this does not modify this vector.
*
* @param v The vector to add.
* @return The vector sum.
*/
inline const Vec3 operator+(const Vec3 &v) const;
/**
* Adds the given vector to this vector.
*
* @param v The vector to add.
* @return This vector, after the addition occurs.
*/
inline Vec3 &operator+=(const Vec3 &v);
/**
* Calculates the difference of this vector with the given vector.
*
* Note: this does not modify this vector.
*
* @param v The vector to subtract.
* @return The vector difference.
*/
inline const Vec3 operator-(const Vec3 &v) const;
/**
* Subtracts the given vector from this vector.
*
* @param v The vector to subtract.
* @return This vector, after the subtraction occurs.
*/
inline Vec3 &operator-=(const Vec3 &v);
/**
* Calculates the negation of this vector.
*
* Note: this does not modify this vector.
*
* @return The negation of this vector.
*/
inline const Vec3 operator-() const;
/**
* Calculates the scalar product of this vector with the given value.
*
* Note: this does not modify this vector.
*
* @param s The value to scale by.
* @return The scaled vector.
*/
inline const Vec3 operator*(float s) const;
/**
* Multiply with a vector.
*
* @param rhs The value to scale by.
* @return The scaled vector.
*/
inline Vec3 operator*(const Vec3 &rhs) const;
/**
* Scales this vector by the given value.
*
* @param s The value to scale by.
* @return This vector, after the scale occurs.
*/
inline Vec3 &operator*=(float s);
/**
* Returns the components of this vector divided by the given constant
*
* Note: this does not modify this vector.
*
* @param s the constant to divide this vector with
* @return a smaller vector
*/
inline const Vec3 operator/(float s) const;
/**
* Divide by a vector.
*
* Note: this does not modify this vector.
*
* @param rhs the vector to divide this vector with
* @return a vector
*/
inline Vec3 operator/(const Vec3 &rhs) const;
/**
* Returns true if the vector's scalar components are all greater
* that the ones of the vector it is compared against.
*
* @param rhs Compare the size of two vectors
* @return bool
*/
inline bool operator<(const Vec3 &rhs) const {
return x < rhs.x && y < rhs.y && z < rhs.z;
}
inline bool operator<=(const Vec3 &rhs) const {
return x <= rhs.x && y <= rhs.y && z <= rhs.z;
}
/**
* Returns true if the vector's scalar components are all smaller
* that the ones of the vector it is compared against.
*
* @param rhs Compare the size of two vectors
* @return bool
*/
inline bool operator>(const Vec3 &rhs) const {
return x > rhs.x && y > rhs.y && z > rhs.z;
}
inline bool operator>=(const Vec3 &rhs) const {
return x >= rhs.x && y >= rhs.y && z >= rhs.z;
}
/**
* Determines if this vector is equal to the given vector.
*
* @param v The vector to compare against.
*
* @return True if this vector is equal to the given vector, false otherwise.
*/
inline bool operator==(const Vec3 &v) const;
/**
* Assign from another vector.
*
* @param rhs the vector to divide this vector with
*
* @return a vector
*/
inline Vec3 &operator=(const Vec3 &rhs) noexcept = default;
/**
* Determines if this vector is not equal to the given vector.
*
* @param v The vector to compare against.
*
* @return True if this vector is not equal to the given vector, false otherwise.
*/
inline bool operator!=(const Vec3 &v) const;
/**
* Determines if this vector is approximately equal to the given vector.
*/
inline bool approxEquals(const Vec3 &v, float precision = CC_FLOAT_CMP_PRECISION) const {
return math::isEqualF(x, v.x, precision) && math::isEqualF(y, v.y, precision) && math::isEqualF(z, v.z, precision);
}
/** equals to Vec3(0,0,0) */
static const Vec3 ZERO;
/** equals to Vec3(1,1,1) */
static const Vec3 ONE;
/** equals to Vec3(1,0,0) */
static const Vec3 UNIT_X;
/** equals to Vec3(0,1,0) */
static const Vec3 UNIT_Y;
/** equals to Vec3(0,0,1) */
static const Vec3 UNIT_Z;
/** equals to Vec3(0,0,-1) */
static const Vec3 FORWARD;
private:
void transformMat4C(const Vec3 &v, const Mat4 &m);
void transformMat4Neon(const Vec3 &v, const Mat4 &m);
};
/**
* Calculates the scalar product of the given vector with the given value.
*
* @param x The value to scale by.
* @param v The vector to scale.
* @return The scaled vector.
*/
inline const Vec3 operator*(float x, const Vec3 &v);
//typedef Vec3 Point3;
NS_CC_MATH_END
/**
end of base group
@}
*/
#include "math/Vec3.inl"