404 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			404 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /**
 | |
|  Copyright 2013 BlackBerry Inc.
 | |
|  Copyright (c) 2013-2016 Chukong Technologies Inc.
 | |
|  Copyright (c) 2017-2023 Xiamen Yaji Software Co., Ltd.
 | |
| 
 | |
|  Licensed under the Apache License, Version 2.0 (the "License");
 | |
|  you may not use this file except in compliance with the License.
 | |
|  You may obtain a copy of the License at
 | |
| 
 | |
|  http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
|  Unless required by applicable law or agreed to in writing, software
 | |
|  distributed under the License is distributed on an "AS IS" BASIS,
 | |
|  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
|  See the License for the specific language governing permissions and
 | |
|  limitations under the License.
 | |
| 
 | |
|  Original file from GamePlay3D: http://gameplay3d.org
 | |
| 
 | |
|  This file was modified to fit the cocos2d-x project
 | |
|  */
 | |
| 
 | |
| #include "math/Vec3.h"
 | |
| #include "base/Macros.h"
 | |
| #include "math/Mat3.h"
 | |
| #include "math/Math.h"
 | |
| #include "math/MathUtil.h"
 | |
| #include "math/Quaternion.h"
 | |
| 
 | |
| #if (CC_PLATFORM == CC_PLATFORM_ANDROID)
 | |
|     #include <cpu-features.h>
 | |
| #endif
 | |
| 
 | |
| #if (CC_PLATFORM == CC_PLATFORM_IOS)
 | |
|     #if defined(__arm64__)
 | |
|         #define USE_NEON64
 | |
|         #define INCLUDE_NEON64
 | |
|     #endif
 | |
| #elif (CC_PLATFORM == CC_PLATFORM_ANDROID)
 | |
|     #if defined(__arm64__) || defined(__aarch64__)
 | |
|         #define USE_NEON64
 | |
|         #define INCLUDE_NEON64
 | |
|     #elif defined(__ARM_NEON__)
 | |
|         #define INCLUDE_NEON32
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| #if defined(USE_NEON64) || defined(USE_NEON32) || defined(INCLUDE_NEON32)
 | |
|     #include "enoki/array.h"
 | |
|     #ifndef ENOKI_ARM_NEON
 | |
|         #error "ENOKI_ARM_NEON isn't enabled!"
 | |
|     #endif
 | |
| using SimdVec4 = enoki::Array<float, 4>;
 | |
| #endif
 | |
| 
 | |
| NS_CC_MATH_BEGIN
 | |
| 
 | |
| Vec3::Vec3(float xx, float yy, float zz)
 | |
| : x(xx),
 | |
|   y(yy),
 | |
|   z(zz) {
 | |
| }
 | |
| 
 | |
| Vec3::Vec3(const float *array) {
 | |
|     set(array);
 | |
| }
 | |
| 
 | |
| Vec3::Vec3(const Vec3 &p1, const Vec3 &p2) {
 | |
|     set(p1, p2);
 | |
| }
 | |
| 
 | |
| Vec3::Vec3(const Vec3 ©) {
 | |
|     set(copy);
 | |
| }
 | |
| 
 | |
| Vec3 Vec3::fromColor(unsigned int color) {
 | |
|     float components[3];
 | |
|     int componentIndex = 0;
 | |
|     for (int i = 2; i >= 0; --i) {
 | |
|         auto component = (color >> i * 8) & 0x0000ff;
 | |
| 
 | |
|         components[componentIndex++] = static_cast<float>(component) / 255.0F;
 | |
|     }
 | |
| 
 | |
|     Vec3 value(components);
 | |
|     return value;
 | |
| }
 | |
| 
 | |
| void Vec3::transformInverseRTS(const Vec3 &v, const Quaternion &r, const Vec3 &t, const Vec3 &s, Vec3 *out) {
 | |
|     CC_ASSERT(out);
 | |
|     const float x = v.x - t.x;
 | |
|     const float y = v.y - t.y;
 | |
|     const float z = v.z - t.z;
 | |
| 
 | |
|     const float ix = r.w * x - r.y * z + r.z * y;
 | |
|     const float iy = r.w * y - r.z * x + r.x * z;
 | |
|     const float iz = r.w * z - r.x * y + r.y * x;
 | |
|     const float iw = r.x * x + r.y * y + r.z * z;
 | |
|     out->x = (ix * r.w + iw * r.x + iy * r.z - iz * r.y) / s.x;
 | |
|     out->y = (iy * r.w + iw * r.y + iz * r.x - ix * r.z) / s.y;
 | |
|     out->z = (iz * r.w + iw * r.z + ix * r.y - iy * r.x) / s.z;
 | |
| }
 | |
| 
 | |
| float Vec3::angle(const Vec3 &v1, const Vec3 &v2) {
 | |
|     const auto magSqr1 = v1.x * v1.x + v1.y * v1.y + v1.z * v1.z;
 | |
|     const auto magSqr2 = v2.x * v2.x + v2.y * v2.y + v2.z * v2.z;
 | |
| 
 | |
|     if (magSqr1 == 0.0F || magSqr2 == 0.0F) {
 | |
|         return 0.0F;
 | |
|     }
 | |
| 
 | |
|     const auto dot = v1.x * v2.x + v1.y * v2.y + v1.z * v2.z;
 | |
|     auto cosine = dot / (sqrt(magSqr1 * magSqr2));
 | |
|     cosine = clampf(cosine, -1.0, 1.0);
 | |
|     return acos(cosine);
 | |
| }
 | |
| 
 | |
| void Vec3::add(const Vec3 &v1, const Vec3 &v2, Vec3 *dst) {
 | |
|     CC_ASSERT(dst);
 | |
| 
 | |
|     dst->x = v1.x + v2.x;
 | |
|     dst->y = v1.y + v2.y;
 | |
|     dst->z = v1.z + v2.z;
 | |
| }
 | |
| 
 | |
| void Vec3::clamp(const Vec3 &min, const Vec3 &max) {
 | |
|     CC_ASSERT(!(min.x > max.x || min.y > max.y || min.z > max.z));
 | |
| 
 | |
|     // Clamp the x value.
 | |
|     if (x < min.x) {
 | |
|         x = min.x;
 | |
|     }
 | |
|     if (x > max.x) {
 | |
|         x = max.x;
 | |
|     }
 | |
| 
 | |
|     // Clamp the y value.
 | |
|     if (y < min.y) {
 | |
|         y = min.y;
 | |
|     }
 | |
|     if (y > max.y) {
 | |
|         y = max.y;
 | |
|     }
 | |
| 
 | |
|     // Clamp the z value.
 | |
|     if (z < min.z) {
 | |
|         z = min.z;
 | |
|     }
 | |
|     if (z > max.z) {
 | |
|         z = max.z;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Vec3::clamp(const Vec3 &v, const Vec3 &min, const Vec3 &max, Vec3 *dst) {
 | |
|     CC_ASSERT(dst);
 | |
|     CC_ASSERT(!(min.x > max.x || min.y > max.y || min.z > max.z));
 | |
| 
 | |
|     // Clamp the x value.
 | |
|     dst->x = v.x;
 | |
|     if (dst->x < min.x) {
 | |
|         dst->x = min.x;
 | |
|     }
 | |
|     if (dst->x > max.x) {
 | |
|         dst->x = max.x;
 | |
|     }
 | |
| 
 | |
|     // Clamp the y value.
 | |
|     dst->y = v.y;
 | |
|     if (dst->y < min.y) {
 | |
|         dst->y = min.y;
 | |
|     }
 | |
|     if (dst->y > max.y) {
 | |
|         dst->y = max.y;
 | |
|     }
 | |
| 
 | |
|     // Clamp the z value.
 | |
|     dst->z = v.z;
 | |
|     if (dst->z < min.z) {
 | |
|         dst->z = min.z;
 | |
|     }
 | |
|     if (dst->z > max.z) {
 | |
|         dst->z = max.z;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void Vec3::cross(const Vec3 &v) {
 | |
|     cross(*this, v, this);
 | |
| }
 | |
| 
 | |
| void Vec3::cross(const Vec3 &v1, const Vec3 &v2, Vec3 *dst) {
 | |
|     dst->set(
 | |
|         v1.y * v2.z - v1.z * v2.y,
 | |
|         v1.z * v2.x - v1.x * v2.z,
 | |
|         v1.x * v2.y - v1.y * v2.x);
 | |
| }
 | |
| 
 | |
| void Vec3::multiply(const Vec3 &v) {
 | |
|     x *= v.x;
 | |
|     y *= v.y;
 | |
|     z *= v.z;
 | |
| }
 | |
| 
 | |
| void Vec3::multiply(const Vec3 &v1, const Vec3 &v2, Vec3 *dst) {
 | |
|     dst->x = v1.x * v2.x;
 | |
|     dst->y = v1.y * v2.y;
 | |
|     dst->z = v1.z * v2.z;
 | |
| }
 | |
| 
 | |
| void Vec3::transformMat3(const Vec3 &v, const Mat3 &m) {
 | |
|     const float ix = v.x;
 | |
|     const float iy = v.y;
 | |
|     const float iz = v.z;
 | |
|     x = ix * m.m[0] + iy * m.m[3] + iz * m.m[6];
 | |
|     y = ix * m.m[1] + iy * m.m[4] + iz * m.m[7];
 | |
|     z = ix * m.m[2] + iy * m.m[5] + iz * m.m[8];
 | |
| }
 | |
| 
 | |
| void Vec3::transformMat4Neon(const Vec3 &v, const Mat4 &m) {
 | |
| #if defined(USE_NEON64) || defined(USE_NEON32) || defined(INCLUDE_NEON32)
 | |
|     alignas(16) float tmpV0[4];
 | |
| 
 | |
|     auto row0 = enoki::load_unaligned<SimdVec4>(&m.m[0]);
 | |
|     auto row1 = enoki::load_unaligned<SimdVec4>(&m.m[4]);
 | |
|     auto row2 = enoki::load_unaligned<SimdVec4>(&m.m[8]);
 | |
|     auto row3 = enoki::load_unaligned<SimdVec4>(&m.m[12]);
 | |
| 
 | |
|     row0 *= v.x;
 | |
|     row1 *= v.y;
 | |
|     row2 *= v.z;
 | |
| 
 | |
|     row0 = row0 + row1 + row2 + row3;
 | |
|     enoki::store(tmpV0, row0);
 | |
|     float rhw;
 | |
| 
 | |
|     if (CC_PREDICT_TRUE(math::isNotZeroF(tmpV0[3]))) {
 | |
|         rhw = 1.F / tmpV0[3];
 | |
|     } else {
 | |
|         rhw = 1.F;
 | |
|     }
 | |
| 
 | |
|     SimdVec4 tmpV1{rhw};
 | |
|     row0 *= tmpV1;
 | |
|     enoki::store(tmpV0, row0);
 | |
| 
 | |
|     x = tmpV0[0];
 | |
|     y = tmpV0[1];
 | |
|     z = tmpV0[2];
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void Vec3::transformMat4C(const Vec3 &v, const Mat4 &m) {
 | |
|     alignas(16) float tmp[4] = {v.x, v.y, v.z, 1.0F};
 | |
|     MathUtil::transformVec4(m.m, tmp, tmp);
 | |
|     float rhw = math::isNotZeroF(tmp[3]) ? 1.F / tmp[3] : 1.F;
 | |
|     x = tmp[0] * rhw;
 | |
|     y = tmp[1] * rhw;
 | |
|     z = tmp[2] * rhw;
 | |
| }
 | |
| 
 | |
| void Vec3::transformMat4(const Vec3 &v, const Mat4 &m) {
 | |
| #if defined(USE_NEON64)
 | |
|     transformMat4Neon(v, m);
 | |
| #elif defined(INCLUDE_NEON32)
 | |
|     if (CC_PREDICT_TRUE(MathUtil::isNeon32Enabled())) {
 | |
|         transformMat4Neon(v, m);
 | |
|     } else {
 | |
|         transformMat4C(v, m);
 | |
|     }
 | |
| #else
 | |
|     transformMat4C(v, m);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void Vec3::transformMat4(const Vec3 &v, const Mat4 &m, Vec3 *dst) {
 | |
|     dst->transformMat4(v, m);
 | |
| }
 | |
| 
 | |
| void Vec3::transformMat4Normal(const Vec3 &v, const Mat4 &m, Vec3 *dst) {
 | |
|     float x = v.x;
 | |
|     float y = v.y;
 | |
|     float z = v.z;
 | |
|     float rhw = m.m[3] * x + m.m[7] * y + m.m[11] * z;
 | |
|     rhw = (rhw != 0.0F ? 1.0F / rhw : 1.0F);
 | |
|     dst->x = (m.m[0] * x + m.m[4] * y + m.m[8] * z) * rhw;
 | |
|     dst->y = (m.m[1] * x + m.m[5] * y + m.m[9] * z) * rhw;
 | |
|     dst->z = (m.m[2] * x + m.m[6] * y + m.m[10] * z) * rhw;
 | |
| }
 | |
| 
 | |
| void Vec3::moveTowards(const Vec3 ¤t, const Vec3 &target, float maxStep, Vec3 *dst) {
 | |
|     const auto deltaX = target.x - current.x;
 | |
|     const auto deltaY = target.y - current.y;
 | |
|     const auto deltaZ = target.z - current.z;
 | |
| 
 | |
|     const auto distanceSqr = deltaX * deltaX + deltaY * deltaY + deltaZ * deltaZ;
 | |
|     if (distanceSqr == 0.0F || (maxStep >= 0.0F && distanceSqr < maxStep * maxStep)) {
 | |
|         dst->set(target);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const auto distance = std::sqrt(distanceSqr);
 | |
|     const auto scale = maxStep / distance;
 | |
|     dst->set(
 | |
|         current.x + deltaX * scale,
 | |
|         current.y + deltaY * scale,
 | |
|         current.z + deltaZ * scale);
 | |
| }
 | |
| 
 | |
| void Vec3::transformQuat(const Quaternion &q) {
 | |
|     const float qx = q.x;
 | |
|     const float qy = q.y;
 | |
|     const float qz = q.z;
 | |
|     const float qw = q.w;
 | |
| 
 | |
|     // calculate quat * vec
 | |
|     const float ix = qw * x + qy * z - qz * y;
 | |
|     const float iy = qw * y + qz * x - qx * z;
 | |
|     const float iz = qw * z + qx * y - qy * x;
 | |
|     const float iw = -qx * x - qy * y - qz * z;
 | |
| 
 | |
|     // calculate result * inverse quat
 | |
|     x = ix * qw + iw * -qx + iy * -qz - iz * -qy;
 | |
|     y = iy * qw + iw * -qy + iz * -qx - ix * -qz;
 | |
|     z = iz * qw + iw * -qz + ix * -qy - iy * -qx;
 | |
| }
 | |
| 
 | |
| float Vec3::distance(const Vec3 &v) const {
 | |
|     const float dx = v.x - x;
 | |
|     const float dy = v.y - y;
 | |
|     const float dz = v.z - z;
 | |
| 
 | |
|     return std::sqrt(dx * dx + dy * dy + dz * dz);
 | |
| }
 | |
| 
 | |
| float Vec3::distanceSquared(const Vec3 &v) const {
 | |
|     const float dx = v.x - x;
 | |
|     const float dy = v.y - y;
 | |
|     const float dz = v.z - z;
 | |
| 
 | |
|     return (dx * dx + dy * dy + dz * dz);
 | |
| }
 | |
| 
 | |
| float Vec3::dot(const Vec3 &v) const {
 | |
|     return (x * v.x + y * v.y + z * v.z);
 | |
| }
 | |
| 
 | |
| float Vec3::dot(const Vec3 &v1, const Vec3 &v2) {
 | |
|     return (v1.x * v2.x + v1.y * v2.y + v1.z * v2.z);
 | |
| }
 | |
| 
 | |
| void Vec3::normalize() {
 | |
|     float len = x * x + y * y + z * z;
 | |
|     if (len > 0.0F) {
 | |
|         len = 1.0F / std::sqrt(len);
 | |
|         x *= len;
 | |
|         y *= len;
 | |
|         z *= len;
 | |
|     }
 | |
| }
 | |
| 
 | |
| Vec3 Vec3::getNormalized() const {
 | |
|     Vec3 v(*this);
 | |
|     v.normalize();
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| void Vec3::subtract(const Vec3 &v1, const Vec3 &v2, Vec3 *dst) {
 | |
|     CC_ASSERT(dst);
 | |
| 
 | |
|     dst->x = v1.x - v2.x;
 | |
|     dst->y = v1.y - v2.y;
 | |
|     dst->z = v1.z - v2.z;
 | |
| }
 | |
| 
 | |
| void Vec3::max(const Vec3 &v1, const Vec3 &v2, Vec3 *dst) {
 | |
|     CC_ASSERT(dst);
 | |
| 
 | |
|     dst->x = std::fmaxf(v1.x, v2.x);
 | |
|     dst->y = std::fmaxf(v1.y, v2.y);
 | |
|     dst->z = std::fmaxf(v1.z, v2.z);
 | |
| }
 | |
| 
 | |
| void Vec3::min(const Vec3 &v1, const Vec3 &v2, Vec3 *dst) {
 | |
|     CC_ASSERT(dst);
 | |
| 
 | |
|     dst->x = std::fminf(v1.x, v2.x);
 | |
|     dst->y = std::fminf(v1.y, v2.y);
 | |
|     dst->z = std::fminf(v1.z, v2.z);
 | |
| }
 | |
| 
 | |
| void Vec3::smooth(const Vec3 &target, float elapsedTime, float responseTime) {
 | |
|     if (elapsedTime > 0.0F) {
 | |
|         *this += (target - *this) * (elapsedTime / (elapsedTime + responseTime));
 | |
|     }
 | |
| }
 | |
| 
 | |
| const Vec3 Vec3::ZERO(0.0F, 0.0F, 0.0F);
 | |
| const Vec3 Vec3::ONE(1.0F, 1.0F, 1.0F);
 | |
| const Vec3 Vec3::UNIT_X(1.0F, 0.0F, 0.0F);
 | |
| const Vec3 Vec3::UNIT_Y(0.0F, 1.0F, 0.0F);
 | |
| const Vec3 Vec3::UNIT_Z(0.0F, 0.0F, 1.0F);
 | |
| const Vec3 Vec3::FORWARD(0.0F, 0.0F, -1.0F);
 | |
| 
 | |
| NS_CC_MATH_END
 | 
