You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
cocos_lib/cocos/base/ThreadPool.cpp

380 lines
12 KiB

/****************************************************************************
Copyright (c) 2016-2017 Chukong Technologies Inc.
Copyright (c) 2017-2023 Xiamen Yaji Software Co., Ltd.
http://www.cocos.com
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
****************************************************************************/
#include "base/ThreadPool.h"
#include <chrono>
#include <memory>
#include "base/memory/Memory.h"
#include "platform/StdC.h"
#ifdef __ANDROID__
#include <android/log.h>
#define LOG_TAG "ThreadPool"
#define LOGD(...) __android_log_print(ANDROID_LOG_DEBUG, LOG_TAG, __VA_ARGS__)
#else
#define LOGD(...) printf(__VA_ARGS__)
#endif
#define TIME_MINUS(now, prev) (std::chrono::duration_cast<std::chrono::milliseconds>((now) - (prev)).count() / 1000.0f)
namespace cc {
#define DEFAULT_THREAD_POOL_MIN_NUM (4)
#define DEFAULT_THREAD_POOL_MAX_NUM (20)
#define DEFAULT_SHRINK_INTERVAL (5)
#define DEFAULT_SHRINK_STEP (2)
#define DEFAULT_STRETCH_STEP (2)
LegacyThreadPool *LegacyThreadPool::_instance = nullptr;
LegacyThreadPool *LegacyThreadPool::getDefaultThreadPool() {
if (LegacyThreadPool::_instance == nullptr) {
LegacyThreadPool::_instance = newCachedThreadPool(DEFAULT_THREAD_POOL_MIN_NUM,
DEFAULT_THREAD_POOL_MAX_NUM,
DEFAULT_SHRINK_INTERVAL, DEFAULT_SHRINK_STEP,
DEFAULT_STRETCH_STEP);
}
return LegacyThreadPool::_instance;
}
void LegacyThreadPool::destroyDefaultThreadPool() {
delete LegacyThreadPool::_instance;
LegacyThreadPool::_instance = nullptr;
}
LegacyThreadPool *LegacyThreadPool::newCachedThreadPool(int minThreadNum, int maxThreadNum, int shrinkInterval,
int shrinkStep, int stretchStep) {
auto *pool = ccnew LegacyThreadPool(minThreadNum, maxThreadNum);
if (pool != nullptr) {
pool->setFixedSize(false);
pool->setShrinkInterval(shrinkInterval);
pool->setShrinkStep(shrinkStep);
pool->setStretchStep(stretchStep);
}
return pool;
}
LegacyThreadPool *LegacyThreadPool::newFixedThreadPool(int threadNum) {
auto *pool = ccnew LegacyThreadPool(threadNum, threadNum);
if (pool != nullptr) {
pool->setFixedSize(true);
}
return pool;
}
LegacyThreadPool *LegacyThreadPool::newSingleThreadPool() {
auto *pool = ccnew LegacyThreadPool(1, 1);
if (pool != nullptr) {
pool->setFixedSize(true);
}
return pool;
}
LegacyThreadPool::LegacyThreadPool(int minNum, int maxNum)
: _minThreadNum(minNum),
_maxThreadNum(maxNum) {
init();
}
// the destructor waits for all the functions in the queue to be finished
LegacyThreadPool::~LegacyThreadPool() {
stop();
}
// number of idle threads
int LegacyThreadPool::getIdleThreadNum() const {
auto *thiz = const_cast<LegacyThreadPool *>(this);
std::lock_guard<std::mutex> lk(thiz->_idleThreadNumMutex);
return _idleThreadNum;
}
void LegacyThreadPool::init() {
_lastShrinkTime = std::chrono::high_resolution_clock::now();
_maxThreadNum = std::max(_minThreadNum, _maxThreadNum);
_threads.resize(_maxThreadNum);
_abortFlags.resize(_maxThreadNum);
_idleFlags.resize(_maxThreadNum);
_initedFlags.resize(_maxThreadNum);
for (int i = 0; i < _maxThreadNum; ++i) {
_idleFlags[i] = std::make_shared<std::atomic<bool>>(false);
if (i < _minThreadNum) {
_abortFlags[i] = std::make_shared<std::atomic<bool>>(false);
setThread(i);
_initedFlags[i] = std::make_shared<std::atomic<bool>>(true);
++_initedThreadNum;
} else {
_abortFlags[i] = std::make_shared<std::atomic<bool>>(true);
_initedFlags[i] = std::make_shared<std::atomic<bool>>(false);
}
}
}
bool LegacyThreadPool::tryShrinkPool() {
LOGD("shrink pool, _idleThreadNum = %d \n", getIdleThreadNum());
auto before = std::chrono::high_resolution_clock::now();
ccstd::vector<int> threadIDsToJoin;
int maxThreadNumToJoin = std::min(_initedThreadNum - _minThreadNum, _shrinkStep);
for (int i = 0; i < _maxThreadNum; ++i) {
if ((int)threadIDsToJoin.size() >= maxThreadNumToJoin) {
break;
}
if (*_idleFlags[i]) {
*_abortFlags[i] = true;
threadIDsToJoin.push_back(i);
}
}
{
// stop the detached threads that were waiting
std::unique_lock<std::mutex> lock(_mutex);
_cv.notify_all();
}
for (const auto &threadID : threadIDsToJoin) { // wait for the computing threads to finish
if (_threads[threadID]->joinable()) {
_threads[threadID]->join();
}
_threads[threadID].reset();
*_initedFlags[threadID] = false;
--_initedThreadNum;
}
auto after = std::chrono::high_resolution_clock::now();
float seconds = TIME_MINUS(after, before);
LOGD("shrink %d threads, waste: %f seconds\n", (int)threadIDsToJoin.size(), seconds);
return (_initedThreadNum <= _minThreadNum);
}
void LegacyThreadPool::stretchPool(int count) {
auto before = std::chrono::high_resolution_clock::now();
int oldThreadCount = _initedThreadNum;
int newThreadCount = 0;
for (int i = 0; i < _maxThreadNum; ++i) {
if (!*_initedFlags[i]) {
*_abortFlags[i] = false;
setThread(i);
*_initedFlags[i] = true;
++_initedThreadNum;
if (++newThreadCount >= count) {
break;
}
}
}
if (newThreadCount > 0) {
auto after = std::chrono::high_resolution_clock::now();
float seconds = TIME_MINUS(after, before);
LOGD("stretch pool from %d to %d, waste %f seconds\n", oldThreadCount, _initedThreadNum,
seconds);
}
}
void LegacyThreadPool::pushTask(const std::function<void(int)> &runnable,
TaskType type /* = DEFAULT*/) {
if (!_isFixedSize) {
_idleThreadNumMutex.lock();
int idleNum = _idleThreadNum;
_idleThreadNumMutex.unlock();
if (idleNum > _minThreadNum) {
if (_taskQueue.empty()) {
auto now = std::chrono::high_resolution_clock::now();
float seconds = TIME_MINUS(now, _lastShrinkTime);
if (seconds > _shrinkInterval) {
tryShrinkPool();
_lastShrinkTime = now;
}
}
} else if (idleNum == 0) {
stretchPool(_stretchStep);
}
}
auto callback = ccnew std::function<void(int)>([runnable](int tid) {
runnable(tid);
});
Task task;
task.type = type;
task.callback = callback;
_taskQueue.push(task);
{
std::unique_lock<std::mutex> lock(_mutex);
_cv.notify_one();
}
}
void LegacyThreadPool::stopAllTasks() {
Task task;
while (_taskQueue.pop(task)) {
delete task.callback; // empty the queue
}
}
void LegacyThreadPool::stopTasksByType(TaskType type) {
Task task;
ccstd::vector<Task> notStopTasks;
notStopTasks.reserve(_taskQueue.size());
while (_taskQueue.pop(task)) {
if (task.type == type) { // Delete the task from queue
delete task.callback;
} else { // If task type isn't match, push it into a vector, then insert to task queue again
notStopTasks.push_back(task);
}
}
if (!notStopTasks.empty()) {
for (const auto &t : notStopTasks) {
_taskQueue.push(t);
}
}
}
void LegacyThreadPool::joinThread(int tid) {
if (tid < 0 || tid >= (int)_threads.size()) {
LOGD("Invalid thread id %d\n", tid);
return;
}
// wait for the computing threads to finish
if (*_initedFlags[tid] && _threads[tid]->joinable()) {
_threads[tid]->join();
*_initedFlags[tid] = false;
--_initedThreadNum;
}
}
int LegacyThreadPool::getTaskNum() const {
return (int)_taskQueue.size();
}
void LegacyThreadPool::setFixedSize(bool isFixedSize) {
_isFixedSize = isFixedSize;
}
void LegacyThreadPool::setShrinkInterval(int seconds) {
if (seconds >= 0) {
_shrinkInterval = static_cast<float>(seconds);
}
}
void LegacyThreadPool::setShrinkStep(int step) {
if (step > 0) {
_shrinkStep = step;
}
}
void LegacyThreadPool::setStretchStep(int step) {
if (step > 0) {
_stretchStep = step;
}
}
void LegacyThreadPool::stop() {
if (_isDone || _isStop) {
return;
}
_isDone = true; // give the waiting threads a command to finish
{
std::unique_lock<std::mutex> lock(_mutex);
_cv.notify_all(); // stop all waiting threads
}
for (int i = 0, n = static_cast<int>(_threads.size()); i < n; ++i) {
joinThread(i);
}
// if there were no threads in the pool but some functors in the queue, the functors are not deleted by the threads
// therefore delete them here
stopAllTasks();
_threads.clear();
_abortFlags.clear();
}
void LegacyThreadPool::setThread(int tid) {
std::shared_ptr<std::atomic<bool>> abortPtr(
_abortFlags[tid]); // a copy of the shared ptr to the flag
auto f = [this, tid, abortPtr /* a copy of the shared ptr to the abort */]() {
std::atomic<bool> &abort = *abortPtr;
Task task;
bool isPop = _taskQueue.pop(task);
while (true) {
while (isPop) { // if there is anything in the queue
std::unique_ptr<std::function<void(int)>> func(
task.callback); // at return, delete the function even if an exception occurred
(*task.callback)(tid);
if (abort) {
return; // the thread is wanted to stop, return even if the queue is not empty yet
}
isPop = _taskQueue.pop(task);
}
// the queue is empty here, wait for the next command
std::unique_lock<std::mutex> lock(_mutex);
_idleThreadNumMutex.lock();
++_idleThreadNum;
_idleThreadNumMutex.unlock();
*_idleFlags[tid] = true;
_cv.wait(lock, [this, &task, &isPop, &abort]() {
isPop = _taskQueue.pop(task);
return isPop || _isDone || abort;
});
*_idleFlags[tid] = false;
_idleThreadNumMutex.lock();
--_idleThreadNum;
_idleThreadNumMutex.unlock();
if (!isPop) {
return; // if the queue is empty and isDone == true or *flag then return
}
}
};
_threads[tid].reset(
ccnew std::thread(f)); // compiler may not support std::make_unique()
}
} // namespace cc