You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
cocos_lib/cocos/audio/android/AudioResampler.h

182 lines
7.3 KiB

/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#include <cstdint>
#if CC_PLATFORM == CC_PLATFORM_ANDROID
#include <android/log.h>
#include <sys/system_properties.h>
#include <sys/types.h>
#endif
#include "audio/android/AudioBufferProvider.h"
//#include <cutils/compiler.h>
//#include <utils/Compat.h>
//#include <media/AudioBufferProvider.h>
//#include <system/audio.h>
#include <cassert>
#include "audio/android/audio.h"
namespace cc {
class AudioResampler {
public:
// Determines quality of SRC.
// LOW_QUALITY: linear interpolator (1st order)
// MED_QUALITY: cubic interpolator (3rd order)
// HIGH_QUALITY: fixed multi-tap FIR (e.g. 48KHz->44.1KHz)
// NOTE: high quality SRC will only be supported for
// certain fixed rate conversions. Sample rate cannot be
// changed dynamically.
enum src_quality { // NOLINT(readability-identifier-naming)
DEFAULT_QUALITY = 0,
LOW_QUALITY = 1,
MED_QUALITY = 2,
HIGH_QUALITY = 3,
VERY_HIGH_QUALITY = 4,
};
static const CONSTEXPR float UNITY_GAIN_FLOAT = 1.0F;
static AudioResampler *create(audio_format_t format, int inChannelCount,
int32_t sampleRate, src_quality quality = DEFAULT_QUALITY);
virtual ~AudioResampler();
virtual void init() = 0;
virtual void setSampleRate(int32_t inSampleRate);
virtual void setVolume(float left, float right);
virtual void setLocalTimeFreq(uint64_t freq);
// set the PTS of the next buffer output by the resampler
virtual void setPTS(int64_t pts);
// Resample int16_t samples from provider and accumulate into 'out'.
// A mono provider delivers a sequence of samples.
// A stereo provider delivers a sequence of interleaved pairs of samples.
//
// In either case, 'out' holds interleaved pairs of fixed-point Q4.27.
// That is, for a mono provider, there is an implicit up-channeling.
// Since this method accumulates, the caller is responsible for clearing 'out' initially.
//
// For a float resampler, 'out' holds interleaved pairs of float samples.
//
// Multichannel interleaved frames for n > 2 is supported for quality DYN_LOW_QUALITY,
// DYN_MED_QUALITY, and DYN_HIGH_QUALITY.
//
// Returns the number of frames resampled into the out buffer.
virtual size_t resample(int32_t *out, size_t outFrameCount,
AudioBufferProvider *provider) = 0;
virtual void reset();
virtual size_t getUnreleasedFrames() const { return mInputIndex; }
// called from destructor, so must not be virtual
src_quality getQuality() const { return mQuality; }
protected:
// number of bits for phase fraction - 30 bits allows nearly 2x downsampling
static const int kNumPhaseBits = 30; // NOLINT(readability-identifier-naming)
// phase mask for fraction
static const uint32_t kPhaseMask = (1LU << kNumPhaseBits) - 1; // NOLINT(readability-identifier-naming)
// multiplier to calculate fixed point phase increment
static const double kPhaseMultiplier; // NOLINT(readability-identifier-naming)
AudioResampler(int inChannelCount, int32_t sampleRate, src_quality quality);
// prevent copying
AudioResampler(const AudioResampler &);
AudioResampler &operator=(const AudioResampler &);
int64_t calculateOutputPTS(int outputFrameIndex);
const int32_t mChannelCount;// NOLINT(readability-identifier-naming)
const int32_t mSampleRate;// NOLINT(readability-identifier-naming)
int32_t mInSampleRate;// NOLINT(readability-identifier-naming)
AudioBufferProvider::Buffer mBuffer;// NOLINT(readability-identifier-naming)
union {
int16_t mVolume[2];// NOLINT(readability-identifier-naming)
uint32_t mVolumeRL;// NOLINT(readability-identifier-naming)
};
int16_t mTargetVolume[2];// NOLINT(readability-identifier-naming)
size_t mInputIndex;// NOLINT(readability-identifier-naming)
int32_t mPhaseIncrement;// NOLINT(readability-identifier-naming)
uint32_t mPhaseFraction;// NOLINT(readability-identifier-naming)
uint64_t mLocalTimeFreq;// NOLINT(readability-identifier-naming)
int64_t mPTS;// NOLINT(readability-identifier-naming)
// returns the inFrameCount required to generate outFrameCount frames.
//
// Placed here to be a consistent for all resamplers.
//
// Right now, we use the upper bound without regards to the current state of the
// input buffer using integer arithmetic, as follows:
//
// (static_cast<uint64_t>(outFrameCount)*mInSampleRate + (mSampleRate - 1))/mSampleRate;
//
// The double precision equivalent (float may not be precise enough):
// ceil(static_cast<double>(outFrameCount) * mInSampleRate / mSampleRate);
//
// this relies on the fact that the mPhaseIncrement is rounded down from
// #phases * mInSampleRate/mSampleRate and the fact that Sum(Floor(x)) <= Floor(Sum(x)).
// http://www.proofwiki.org/wiki/Sum_of_Floors_Not_Greater_Than_Floor_of_Sums
//
// (so long as double precision is computed accurately enough to be considered
// greater than or equal to the Floor(x) value in int32_t arithmetic; thus this
// will not necessarily hold for floats).
//
// REFINE:
// Greater accuracy and a tight bound is obtained by:
// 1) subtract and adjust for the current state of the AudioBufferProvider buffer.
// 2) using the exact integer formula where (ignoring 64b casting)
// inFrameCount = (mPhaseIncrement * (outFrameCount - 1) + mPhaseFraction) / phaseWrapLimit;
// phaseWrapLimit is the wraparound (1 << kNumPhaseBits), if not specified explicitly.
//
inline size_t getInFrameCountRequired(size_t outFrameCount) const {
return (static_cast<size_t>(outFrameCount) * mInSampleRate + (mSampleRate - 1)) / mSampleRate;
}
inline float clampFloatVol(float volume) {//NOLINT(readability-identifier-naming, readability-convert-member-functions-to-static)
float ret = 0.0F;
if (volume > UNITY_GAIN_FLOAT) {
ret = UNITY_GAIN_FLOAT;
} else if (volume >= 0.) {
ret = volume;
}
return ret; // NaN or negative volume maps to 0.
}
private:
const src_quality mQuality;// NOLINT(readability-identifier-naming)
// Return 'true' if the quality level is supported without explicit request
static bool qualityIsSupported(src_quality quality);
// For pthread_once()
static void init_routine(); // NOLINT(readability-identifier-naming)
// Return the estimated CPU load for specific resampler in MHz.
// The absolute number is irrelevant, it's the relative values that matter.
static uint32_t qualityMHz(src_quality quality);
};
// ----------------------------------------------------------------------------
} // namespace cc