/**************************************************************************** Copyright (c) 2008-2010 Ricardo Quesada Copyright (c) 2010-2012 cocos2d-x.org Copyright (c) 2011 Zynga Inc. Copyright (c) 2013-2016 Chukong Technologies Inc. Copyright (c) 2017-2023 Xiamen Yaji Software Co., Ltd. http://www.cocos.com Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ #include "base/Scheduler.h" #include #include #include "base/Log.h" #include "base/Macros.h" #include "base/memory/Memory.h" namespace { constexpr unsigned CC_REPEAT_FOREVER{UINT_MAX - 1}; constexpr int MAX_FUNC_TO_PERFORM{30}; constexpr int INITIAL_TIMER_COUND{10}; } // namespace namespace cc { // implementation Timer void Timer::setupTimerWithInterval(float seconds, unsigned int repeat, float delay) { _elapsed = -1; _interval = seconds; _delay = delay; _useDelay = _delay > 0.0F; _repeat = repeat; _runForever = _repeat == CC_REPEAT_FOREVER; } void Timer::update(float dt) { if (_elapsed == -1) { _elapsed = 0; _timesExecuted = 0; return; } // accumulate elapsed time _elapsed += dt; // deal with delay if (_useDelay) { if (_elapsed < _delay) { return; } trigger(_delay); _elapsed = _elapsed - _delay; _timesExecuted += 1; _useDelay = false; // after delay, the rest time should compare with interval if (!_runForever && _timesExecuted > _repeat) { //unschedule timer cancel(); return; } } // if _interval == 0, should trigger once every frame float interval = (_interval > 0) ? _interval : _elapsed; while (_elapsed >= interval) { trigger(interval); _elapsed -= interval; _timesExecuted += 1; if (!_runForever && _timesExecuted > _repeat) { cancel(); break; } if (_elapsed <= 0.F) { break; } if (_scheduler->isCurrentTargetSalvaged()) { break; } } } // TimerTargetCallback bool TimerTargetCallback::initWithCallback(Scheduler *scheduler, const ccSchedulerFunc &callback, void *target, const ccstd::string &key, float seconds, unsigned int repeat, float delay) { _scheduler = scheduler; _target = target; _callback = callback; _key = key; setupTimerWithInterval(seconds, repeat, delay); return true; } void TimerTargetCallback::trigger(float dt) { if (_callback) { _callback(dt); } } void TimerTargetCallback::cancel() { _scheduler->unschedule(_key, _target); } // implementation of Scheduler Scheduler::Scheduler() { // I don't expect to have more than 30 functions to all per frame _functionsToPerform.reserve(MAX_FUNC_TO_PERFORM); } Scheduler::~Scheduler() { unscheduleAll(); } void Scheduler::removeHashElement(HashTimerEntry *element) { if (element) { for (auto &timer : element->timers) { timer->release(); } element->timers.clear(); _hashForTimers.erase(element->target); delete element; } } void Scheduler::schedule(const ccSchedulerFunc &callback, void *target, float interval, bool paused, const ccstd::string &key) { this->schedule(callback, target, interval, CC_REPEAT_FOREVER, 0.0F, paused, key); } void Scheduler::schedule(const ccSchedulerFunc &callback, void *target, float interval, unsigned int repeat, float delay, bool paused, const ccstd::string &key) { CC_ASSERT(target); CC_ASSERT(!key.empty()); auto iter = _hashForTimers.find(target); HashTimerEntry *element = nullptr; if (iter == _hashForTimers.end()) { element = ccnew HashTimerEntry(); element->target = target; _hashForTimers[target] = element; // Is this the 1st element ? Then set the pause level to all the selectors of this target element->paused = paused; } else { element = iter->second; CC_ASSERT(element->paused == paused); } if (element->timers.empty()) { element->timers.reserve(INITIAL_TIMER_COUND); } else { for (auto &e : element->timers) { auto *timer = dynamic_cast(e); if (key == timer->getKey()) { CC_LOG_DEBUG("CCScheduler#scheduleSelector. Selector already scheduled. Updating interval from: %.4f to %.4f", timer->getInterval(), interval); timer->setInterval(interval); return; } } } auto *timer = ccnew TimerTargetCallback(); timer->addRef(); timer->initWithCallback(this, callback, target, key, interval, repeat, delay); element->timers.emplace_back(timer); } void Scheduler::unschedule(const ccstd::string &key, void *target) { // explicit handle nil arguments when removing an object if (target == nullptr || key.empty()) { return; } auto iter = _hashForTimers.find(target); if (iter != _hashForTimers.end()) { HashTimerEntry *element = iter->second; int i = 0; auto &timers = element->timers; for (auto *t : timers) { auto *timer = dynamic_cast(t); if (timer && key == timer->getKey()) { if (timer == element->currentTimer && (!element->currentTimerSalvaged)) { element->currentTimer->addRef(); element->currentTimerSalvaged = true; } timers.erase(timers.begin() + i); timer->release(); // update timerIndex in case we are in tick:, looping over the actions if (element->timerIndex >= i) { element->timerIndex--; } if (timers.empty()) { if (_currentTarget == element) { _currentTargetSalvaged = true; } else { removeHashElement(element); } } return; } ++i; } } } bool Scheduler::isScheduled(const ccstd::string &key, void *target) { CC_ASSERT(!key.empty()); CC_ASSERT(target); auto iter = _hashForTimers.find(target); if (iter == _hashForTimers.end()) { return false; } HashTimerEntry *element = iter->second; if (element->timers.empty()) { return false; } const auto &timers = element->timers; return std::any_of(timers.begin(), timers.end(), [&key](Timer *t) { auto *timer = dynamic_cast(t); return (timer && key == timer->getKey()); }); } void Scheduler::unscheduleAll() { for (auto iter = _hashForTimers.begin(); iter != _hashForTimers.end();) { unscheduleAllForTarget(iter++->first); } } void Scheduler::unscheduleAllForTarget(void *target) { // explicit nullptr handling if (target == nullptr) { return; } // Custom Selectors auto iter = _hashForTimers.find(target); if (iter != _hashForTimers.end()) { HashTimerEntry *element = iter->second; auto &timers = element->timers; if (std::find(timers.begin(), timers.end(), element->currentTimer) != timers.end() && (!element->currentTimerSalvaged)) { element->currentTimer->addRef(); element->currentTimerSalvaged = true; } for (auto *t : timers) { t->release(); } timers.clear(); if (_currentTarget == element) { _currentTargetSalvaged = true; } else { removeHashElement(element); } } } void Scheduler::resumeTarget(void *target) { CC_ASSERT_NOT_NULL(target); // custom selectors auto iter = _hashForTimers.find(target); if (iter != _hashForTimers.end()) { iter->second->paused = false; } } void Scheduler::pauseTarget(void *target) { CC_ASSERT_NOT_NULL(target); // custom selectors auto iter = _hashForTimers.find(target); if (iter != _hashForTimers.end()) { iter->second->paused = true; } } bool Scheduler::isTargetPaused(void *target) { CC_ASSERT_NOT_NULL(target); // Custom selectors auto iter = _hashForTimers.find(target); if (iter != _hashForTimers.end()) { return iter->second->paused; } return false; // should never get here } void Scheduler::performFunctionInCocosThread(const std::function &function) { _performMutex.lock(); _functionsToPerform.push_back(function); _performMutex.unlock(); } void Scheduler::removeAllFunctionsToBePerformedInCocosThread() { std::unique_lock lock(_performMutex); _functionsToPerform.clear(); } // main loop void Scheduler::update(float dt) { _updateHashLocked = true; // Iterate over all the custom selectors HashTimerEntry *elt = nullptr; for (auto iter = _hashForTimers.begin(); iter != _hashForTimers.end();) { elt = iter->second; _currentTarget = elt; _currentTargetSalvaged = false; if (!_currentTarget->paused) { // The 'timers' array may change while inside this loop for (elt->timerIndex = 0; elt->timerIndex < static_cast(elt->timers.size()); ++(elt->timerIndex)) { elt->currentTimer = elt->timers.at(elt->timerIndex); elt->currentTimerSalvaged = false; elt->currentTimer->update(dt); if (elt->currentTimerSalvaged) { // The currentTimer told the remove itself. To prevent the timer from // accidentally deallocating itself before finishing its step, we retained // it. Now that step is done, it's safe to release it. elt->currentTimer->release(); } elt->currentTimer = nullptr; } } // only delete currentTarget if no actions were scheduled during the cycle (issue #481) if (_currentTargetSalvaged && _currentTarget->timers.empty()) { ++iter; removeHashElement(_currentTarget); if (iter != _hashForTimers.end()) { ++iter; } } else { ++iter; } } _updateHashLocked = false; _currentTarget = nullptr; // // Functions allocated from another thread // // Testing size is faster than locking / unlocking. // And almost never there will be functions scheduled to be called. if (!_functionsToPerform.empty()) { _performMutex.lock(); // fixed #4123: Save the callback functions, they must be invoked after '_performMutex.unlock()', otherwise if new functions are added in callback, it will cause thread deadlock. auto temp = _functionsToPerform; _functionsToPerform.clear(); _performMutex.unlock(); for (const auto &function : temp) { function(); } } } } // namespace cc