/**************************************************************************** Copyright (c) 2010 ForzeField Studios S.L. http://forzefield.com Copyright (c) 2010-2012 cocos2d-x.org Copyright (c) 2013-2016 Chukong Technologies Inc. Copyright (c) 2017-2023 Xiamen Yaji Software Co., Ltd. http://www.cocos.com Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ #pragma once #include #include // for std::find #include #include #include "base/Log.h" #include "base/Random.h" #include "base/RefCounted.h" #include "base/memory/Memory.h" #include "base/std/container/vector.h" namespace cc { /* * Similar to ccstd::vector, but it will manage reference count automatically internally. * Which means it will invoke RefCounted::addRef() when adding an element, and invoke RefCounted::release() when removing an element. * @warn The element should be `RefCounted` or its sub-class. */ template class RefVector { public: // ------------------------------------------ // Iterators // ------------------------------------------ /** Iterator, can be used to loop the Vector. */ using iterator = typename ccstd::vector::iterator; /** Const iterator, can be used to loop the Vector. */ using const_iterator = typename ccstd::vector::const_iterator; /** Reversed iterator, can be used to loop the Vector in reverse sequence. */ using reverse_iterator = typename ccstd::vector::reverse_iterator; /** Reversed iterator, can be used to loop the Vector in reverse sequence. */ using const_reverse_iterator = typename ccstd::vector::const_reverse_iterator; /** Returns an iterator pointing the first element of the Vector. */ iterator begin() { return _data.begin(); } /** Returns an iterator pointing the first element of the Vector. */ const_iterator begin() const { return _data.begin(); } /** * Returns an iterator referring to the `past-the-end` element in the Vector container. * The past-the-end element is the theoretical element that would follow the last element in the Vector. * It does not point to any element, and thus shall not be dereferenced. */ iterator end() { return _data.end(); } /** * Returns iterator referring to the `past-the-end` element in the Vector container. * The past-the-end element is the theoretical element that would follow the last element in the Vector. * It does not point to any element, and thus shall not be dereferenced. */ const_iterator end() const { return _data.end(); } /** Returns a const_iterator pointing the first element of the Vector. */ const_iterator cbegin() const { return _data.cbegin(); } /** Returns a const_iterator pointing the `past-the-end` element of the Vector. */ const_iterator cend() const { return _data.cend(); } /** Returns a reverse iterator pointing to the last element of the Vector. */ reverse_iterator rbegin() { return _data.rbegin(); } /** Returns a reverse iterator pointing to the last element of the Vector. */ const_reverse_iterator rbegin() const { return _data.rbegin(); } /** Returns a reverse iterator pointing to the theoretical element preceding the * first element of the vector (which is considered its reverse end). */ reverse_iterator rend() { return _data.rend(); } /** Returns a reverse iterator pointing to the theoretical element preceding the * first element of the vector (which is considered its reverse end). */ const_reverse_iterator rend() const { return _data.rend(); } /** Returns a const_reverse_iterator pointing to the last element in the container (i.e., its reverse beginning). */ const_reverse_iterator crbegin() const { return _data.crbegin(); } /** Returns a const_reverse_iterator pointing to the theoretical element preceding the first element in * the container (which is considered its reverse end). */ const_reverse_iterator crend() const { return _data.crend(); } /** Constructor. */ RefVector() : _data() { static_assert(std::is_convertible::value, "Invalid Type for cc::Vector!"); } /** * Constructor with a capacity. * @param capacity Capacity of the Vector. */ explicit RefVector(uint32_t capacity) : _data() { static_assert(std::is_convertible::value, "Invalid Type for cc::Vector!"); // CC_LOG_INFO("In the default constructor with capacity of Vector."); reserve(capacity); } /** Constructor with initializer list. */ RefVector(std::initializer_list list) { for (auto &element : list) { pushBack(element); } } /** Destructor. */ ~RefVector() { // CC_LOG_INFO("In the destructor of Vector."); clear(); } /** Copy constructor. */ RefVector(const RefVector &other) { static_assert(std::is_convertible::value, "Invalid Type for cc::Vector!"); // CC_LOG_INFO("In the copy constructor!"); _data = other._data; addRefForAllObjects(); } /** Copy constructor. */ explicit RefVector(const ccstd::vector &other) { static_assert(std::is_convertible::value, "Invalid Type for cc::Vector!"); // CC_LOG_INFO("In the copy constructor!"); _data = other; addRefForAllObjects(); } /** Constructor with std::move semantic. */ RefVector(RefVector &&other) noexcept { static_assert(std::is_convertible::value, "Invalid Type for cc::Vector!"); // CC_LOG_INFO("In the move constructor of Vector!"); _data = std::move(other._data); } /** Constructor with std::move semantic. */ explicit RefVector(ccstd::vector &&other) noexcept { static_assert(std::is_convertible::value, "Invalid Type for cc::Vector!"); // CC_LOG_INFO("In the move constructor of Vector!"); _data = std::move(other); // NOTE: The reference count of T in ccstd::vector may be 0 so we need to retain all elements in ccstd::vector. addRefForAllObjects(); } /** Copy assignment operator. */ RefVector &operator=(const RefVector &other) { if (this != &other) { // CC_LOG_INFO("In the copy assignment operator!"); clear(); _data = other._data; addRefForAllObjects(); } return *this; } RefVector &operator=(const ccstd::vector &other) { static_assert(std::is_convertible::value, "Invalid Type for cc::Vector!"); if (&_data != &other) { // CC_LOG_INFO("In the copy assign operator!"); clear(); _data = other; addRefForAllObjects(); } return *this; } /** Move assignment operator with std::move semantic. */ RefVector &operator=(RefVector &&other) noexcept { if (this != &other) { // CC_LOG_INFO("In the move assignment operator!"); clear(); _data = std::move(other._data); } return *this; } RefVector &operator=(ccstd::vector &&other) noexcept { if (&_data != &other) { // CC_LOG_INFO("In the move assignment operator!"); clear(); _data = std::move(other); // NOTE: The reference count of T in ccstd::vector may be 0 so we need to retain all elements in ccstd::vector. addRefForAllObjects(); } return *this; } RefVector &operator=(std::initializer_list list) { clear(); for (auto &element : list) { pushBack(element); } return *this; } // Can not return reference, or it can use like this // refVector[i] = val; // Then, reference count will be wrong. In order to correct reference count, should: // - dec refVector[i] reference count // - add `val` reference count. // It is hard to use, so delete it. T &operator[](uint32_t idx) = delete; // As non const version is disabled, disable const version too. const T &operator[](uint32_t idx) const = delete; /** * Requests that the vector capacity be at least enough to contain n elements. * @param capacity Minimum capacity requested of the Vector. */ void reserve(uint32_t n) { _data.reserve(n); } /** @brief Returns the size of the storage space currently allocated for the Vector, expressed in terms of elements. * @note This capacity is not necessarily equal to the Vector size. * It can be equal or greater, with the extra space allowing to accommodate for growth without the need to reallocate on each insertion. * @return The size of the currently allocated storage capacity in the Vector, measured in terms of the number elements it can hold. */ uint32_t capacity() const { return _data.capacity(); } /** @brief Returns the number of elements in the Vector. * @note This is the number of actual objects held in the Vector, which is not necessarily equal to its storage capacity. * @return The number of elements in the Vector. */ uint32_t size() const { return static_cast(_data.size()); } /** @brief Returns whether the Vector is empty (i.e. whether its size is 0). * @note This function does not modify the container in any way. To clear the content of a vector, see Vector::clear. */ bool empty() const { return _data.empty(); } /** Returns the maximum number of elements that the Vector can hold. */ uint32_t maxSize() const { return _data.max_size(); } /** Returns index of a certain object, return UINT_MAX if doesn't contain the object */ uint32_t getIndex(T object) const { auto iter = std::find(_data.begin(), _data.end(), object); if (iter != _data.end()) { return iter - _data.begin(); } return -1; } /** @brief Find the object in the Vector. * @param object The object to find. * @return Returns an iterator which refers to the element that its value is equals to object. * Returns Vector::end() if not found. */ const_iterator find(T object) const { return std::find(_data.begin(), _data.end(), object); } /** @brief Find the object in the Vector. * @param object The object to find. * @return Returns an iterator which refers to the element that its value is equals to object. * Returns Vector::end() if not found. */ iterator find(T object) { return std::find(_data.begin(), _data.end(), object); } /** Returns the element at position 'index' in the Vector. */ const T &at(uint32_t index) const { CC_ASSERT(index < size()); return _data[index]; } T &at(uint32_t index) { CC_ASSERT(index < size()); return _data[index]; } /** Returns the first element in the Vector. */ T front() const { return _data.front(); } /** Returns the last element of the Vector. */ T back() const { return _data.back(); } /** Returns a random element of the Vector. */ T getRandomObject() const { if (!_data.empty()) { auto randIdx = RandomHelper::randomInt(0, static_cast(_data.size()) - 1); return *(_data.begin() + randIdx); } return nullptr; } /** * Checks whether an object is in the container. * @param object The object to be checked. * @return True if the object is in the container, false if not. */ bool contains(T object) const { return (std::find(_data.begin(), _data.end(), object) != _data.end()); } /** * Checks whether two vectors are equal. * @param other The vector to be compared. * @return True if two vectors are equal, false if not. */ bool equals(const RefVector &other) const { uint32_t s = this->size(); if (s != other.size()) { return false; } for (uint32_t i = 0; i < s; i++) { if (this->at(i) != other.at(i)) { return false; } } return true; } // Adds objects /** Adds a new element at the end of the Vector. */ void pushBack(T object) { CC_ASSERT_NOT_NULL(object); _data.push_back(object); object->addRef(); } /** Push all elements of an existing Vector to the end of current Vector. */ void pushBack(const RefVector &other) { for (const auto &obj : other) { _data.push_back(obj); obj->addRef(); } } /** * Insert an object at certain index. * @param index The index to be inserted at. * @param object The object to be inserted. */ void insert(uint32_t index, T object) { CC_ASSERT(index <= size()); CC_ASSERT_NOT_NULL(object); _data.insert((std::begin(_data) + index), object); object->addRef(); } // Removes Objects /** Removes the last element in the Vector. */ void popBack() { CC_ASSERT(!_data.empty()); auto last = _data.back(); _data.pop_back(); last->release(); } /** Remove a certain object in Vector. * @param object The object to be removed. * @param removeAll Whether to remove all elements with the same value. * If its value is 'false', it will just erase the first occurrence. */ void eraseObject(T object, bool removeAll = false) { CC_ASSERT_NOT_NULL(object); if (removeAll) { for (auto iter = _data.begin(); iter != _data.end();) { if ((*iter) == object) { iter = _data.erase(iter); object->release(); } else { ++iter; } } } else { auto iter = std::find(_data.begin(), _data.end(), object); if (iter != _data.end()) { _data.erase(iter); object->release(); } } } /** @brief Removes from the vector with an iterator. * @param position Iterator pointing to a single element to be removed from the Vector. * @return An iterator pointing to the new location of the element that followed the last element erased by the function call. * This is the container end if the operation erased the last element in the sequence. */ iterator erase(iterator position) { CC_ASSERT(position >= _data.begin() && position < _data.end()); (*position)->release(); return _data.erase(position); } /** @brief Removes from the Vector with a range of elements ( [first, last) ). * @param first The beginning of the range. * @param last The end of the range, the 'last' will not be removed, it's only for indicating the end of range. * @return An iterator pointing to the new location of the element that followed the last element erased by the function call. * This is the container end if the operation erased the last element in the sequence. */ iterator erase(iterator first, iterator last) { for (auto iter = first; iter != last; ++iter) { (*iter)->release(); } return _data.erase(first, last); } /** @brief Removes from the Vector by index. * @param index The index of the element to be removed from the Vector. * @return An iterator pointing to the successor of Vector[index]. */ iterator erase(uint32_t index) { CC_ASSERT(!_data.empty() && index < size()); auto it = std::next(begin(), index); (*it)->release(); return _data.erase(it); } /** @brief Removes all elements from the Vector (which are destroyed), leaving the container with a size of 0. * @note All the elements in the Vector will be released (reference count will be decreased). */ void clear() { for (auto it = std::begin(_data); it != std::end(_data); ++it) { auto *ptr = *it; if (ptr) { ptr->release(); } } _data.clear(); } // Rearranging Content /** Swap the values object1 and object2. */ void swap(T object1, T object2) { uint32_t idx1 = getIndex(object1); uint32_t idx2 = getIndex(object2); std::swap(_data[idx1], _data[idx2]); } /** Swap two elements by indexes. */ void swap(uint32_t index1, uint32_t index2) { CC_ASSERT(index1 < size() && index2 < size()); std::swap(_data[index1], _data[index2]); } /** Replace value at index with given object. */ void replace(uint32_t index, T object) { CC_ASSERT(index < size()); CC_ASSERT_NOT_NULL(object); CC_SAFE_RELEASE(_data[index]); _data[index] = object; CC_SAFE_ADD_REF(object); } /** Reverses the Vector. */ void reverse() { std::reverse(std::begin(_data), std::end(_data)); } /** Requests the container to reduce its capacity to fit its size. */ void shrinkToFit() { _data.shrink_to_fit(); } const ccstd::vector &get() const { return _data; } void resize(uint32_t size) { _data.resize(size); } protected: /** Retains all the objects in the vector */ void addRefForAllObjects() { for (const auto &obj : _data) { obj->addRef(); } } ccstd::vector _data; }; } // namespace cc