/**************************************************************************** Copyright (c) 2021-2023 Xiamen Yaji Software Co., Ltd. http://www.cocos.com Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ****************************************************************************/ #pragma once #include #include #include #include #include "cocos/base/std/container/vector.h" #include "cocos/base/std/variant.h" #include "cocos/renderer/pipeline/custom/details/GraphTypes.h" #include "cocos/renderer/pipeline/custom/details/GslUtils.h" namespace cc { namespace render { namespace impl { //-------------------------------------------------------------------- // PropertyMap //-------------------------------------------------------------------- template struct VectorVertexBundlePropertyMap : public boost::put_get_helper< Reference, VectorVertexBundlePropertyMap> { using value_type = Value; using reference = Reference; using key_type = typename Graph::vertex_descriptor; using category = Category; VectorVertexBundlePropertyMap(Graph &g) noexcept // NOLINT(google-explicit-constructor) : graph(&g) {} inline reference operator[](const key_type &v) const noexcept { return graph->mVertices[v].property; } inline reference operator()(const key_type &v) const noexcept { return operator[](v); } Graph *graph{}; }; template struct PointerVertexBundlePropertyMap : public boost::put_get_helper< Reference, PointerVertexBundlePropertyMap> { using value_type = Value; using reference = Reference; using key_type = typename Graph::vertex_descriptor; using category = Category; PointerVertexBundlePropertyMap(Graph &g) noexcept // NOLINT(google-explicit-constructor) : graph(&g) {} inline reference operator[](const key_type &v) const noexcept { auto *sv = static_cast(v); return sv->property; } inline reference operator()(const key_type &v) const noexcept { return operator[](v); } Graph *graph{}; }; template struct VectorVertexBundleMemberPropertyMap : public boost::put_get_helper< Reference, VectorVertexBundleMemberPropertyMap> { using value_type = Value; using reference = Reference; using key_type = typename Graph::vertex_descriptor; using category = Category; VectorVertexBundleMemberPropertyMap(Graph &g, MemberPointer ptr) noexcept : graph(&g), memberPointer(ptr) {} inline reference operator[](const key_type &v) const noexcept { return graph->mVertices[v].property.*memberPointer; } inline reference operator()(const key_type &v) const noexcept { return operator[](v); } Graph *graph{}; MemberPointer memberPointer{}; }; template struct PointerVertexBundleMemberPropertyMap : public boost::put_get_helper< Reference, PointerVertexBundleMemberPropertyMap> { using value_type = Value; using reference = Reference; using key_type = typename Graph::vertex_descriptor; using category = Category; PointerVertexBundleMemberPropertyMap(Graph &g, MemberPointer ptr) noexcept : graph(&g), memberPointer(ptr) {} inline reference operator[](const key_type &v) const noexcept { auto *sv = static_cast(v); return sv->property.*memberPointer; } inline reference operator()(const key_type &v) const noexcept { return operator[](v); } Graph *graph{}; MemberPointer memberPointer{}; }; template struct VectorVertexComponentPropertyMap : public boost::put_get_helper< Reference, VectorVertexComponentPropertyMap> { using value_type = Value; using reference = Reference; using key_type = typename Graph::vertex_descriptor; using category = Category; VectorVertexComponentPropertyMap(Container &c) noexcept // NOLINT(google-explicit-constructor) : container(&c) {} inline reference operator[](const key_type &v) const noexcept { return (*container)[v]; } inline reference operator()(const key_type &v) const noexcept { return operator[](v); } Container *container{}; }; template struct VectorVertexComponentMemberPropertyMap : public boost::put_get_helper< Reference, VectorVertexComponentMemberPropertyMap> { using value_type = Value; using reference = Reference; using key_type = typename Graph::vertex_descriptor; using category = Category; VectorVertexComponentMemberPropertyMap(Container &c, MemberPointer ptr) noexcept : container(&c), memberPointer(ptr) {} inline reference operator[](const key_type &v) const noexcept { return (*container)[v].*memberPointer; } inline reference operator()(const key_type &v) const noexcept { return operator[](v); } Container *container{}; MemberPointer memberPointer{}; }; template struct VectorVertexIteratorComponentPropertyMap : public boost::put_get_helper< Reference, VectorVertexIteratorComponentPropertyMap> { using value_type = Value; using reference = Reference; using key_type = typename Graph::vertex_descriptor; using category = Category; VectorVertexIteratorComponentPropertyMap(Graph &g, ComponentPointer component) noexcept : graph(&g), componentPointer(component) {} inline reference operator[](const key_type &v) const noexcept { return *(graph->mVertices[v].*componentPointer); } inline reference operator()(const key_type &v) const noexcept { return operator[](v); } Graph *graph{}; ComponentPointer componentPointer{}; }; template struct VectorVertexIteratorComponentMemberPropertyMap : public boost::put_get_helper< Reference, VectorVertexIteratorComponentMemberPropertyMap> { using value_type = Value; using reference = Reference; using key_type = typename Graph::vertex_descriptor; using category = Category; VectorVertexIteratorComponentMemberPropertyMap(Graph &g, ComponentPointer component, MemberPointer ptr) noexcept : graph(&g), componentPointer(component), memberPointer(ptr) {} inline reference operator[](const key_type &v) const noexcept { return (*(graph->mVertices[v].*componentPointer)).*memberPointer; } inline reference operator()(const key_type &v) const noexcept { return operator[](v); } Graph *graph{}; ComponentPointer componentPointer{}; MemberPointer memberPointer{}; }; template struct VectorPathPropertyMap : public boost::put_get_helper< Reference, VectorPathPropertyMap> { using value_type = Value; using reference = Reference; using key_type = VertexDescriptor; using category = Category; VectorPathPropertyMap(Container &c) noexcept // NOLINT(google-explicit-constructor) : container(&c) {} inline reference operator[](const key_type &v) const noexcept { return (*container)[v].mPathIterator->first; } inline reference operator()(const key_type &v) const noexcept { return operator[](v); } Container *container{}; }; template struct EdgeBundlePropertyMap : public boost::put_get_helper< Reference, EdgeBundlePropertyMap> { using value_type = Value; using reference = Reference; using key_type = typename Graph::edge_descriptor; using category = Category; EdgeBundlePropertyMap(Graph &g) noexcept // NOLINT(google-explicit-constructor) : graph(&g) {} inline reference operator[](const key_type &e) const noexcept { return *static_cast(e.get_property()); } inline reference operator()(const key_type &e) const noexcept { return operator[](e); } Graph *graph{}; }; template struct EdgeBundleMemberPropertyMap : public boost::put_get_helper< Reference, EdgeBundleMemberPropertyMap> { using value_type = Value; using reference = Reference; using key_type = typename Graph::edge_descriptor; using category = Category; EdgeBundleMemberPropertyMap(Graph &g, MemberPointer ptr) noexcept : graph(&g), memberPointer(ptr) {} inline reference operator[](const key_type &e) const noexcept { auto &p = *static_cast(e.get_property()); return p.*memberPointer; } inline reference operator()(const key_type &e) const noexcept { return operator[](e); } Graph *graph{}; MemberPointer memberPointer{}; }; template void sequenceEraseIf(Sequence &c, Predicate &&p) noexcept { if (!c.empty()) { c.erase(std::remove_if(c.begin(), c.end(), p), c.end()); } } // notice: Predicate might be different from associative key // when Predicate is associative key, it is slower than erase [lower_bound, upper_bound) template void associativeEraseIf(AssociativeContainer &c, Predicate &&p) noexcept { auto next = c.begin(); for (auto i = next; next != c.end(); i = next) { ++next; if (p(*i)) { c.erase(i); } } } // notice: Predicate might be different from associative key // when Predicate is associative key, it is slower than erase [lower_bound, upper_bound) template void unstableAssociativeEraseIf(AssociativeContainer &c, Predicate &&p) noexcept { auto n = c.size(); while (n--) { for (auto i = c.begin(); i != c.end(); ++i) { if (p(*i)) { c.erase(i); break; } } } } template inline void removeIncidenceEdge(EdgeDescriptor e, IncidenceList &el) noexcept { e.expectsNoProperty(); for (auto i = el.begin(); i != el.end(); ++i) { if ((*i).get_target() == e.target) { el.erase(i); return; } } } template inline void removeIncidenceEdge( EdgeDescriptorWithProperty e, IncidenceList &el) noexcept { for (auto i = el.begin(); i != el.end(); ++i) { if (static_cast(&(*i).get_property()) == e.get_property()) { el.erase(i); return; } } } template inline void removeDirectedAllEdgeProperties(Graph &g, IncidenceList &el, VertexDescriptor v) noexcept { auto i = el.begin(); auto end = el.end(); for (; i != end; ++i) { if ((*i).get_target() == v) { // NOTE: Wihtout this skip, this loop will double-delete // properties of loop edges. This solution is based on the // observation that the incidence edges of a vertex with a loop // are adjacent in the out edge list. This *may* actually hold // for multisets also. bool skip = (std::next(i) != end && i->get_iter() == std::next(i)->get_iter()); g.edges.erase((*i).get_iter()); if (skip) { ++i; } } } } template inline void sequenceRemoveIncidenceEdgeIf(IncidenceIterator first, IncidenceIterator last, IncidenceList &el, Predicate &&pred) noexcept { // remove_if while (first != last && !pred(*first)) { ++first; } auto i = first; if (first != last) { for (++i; i != last; ++i) { if (!pred(*i)) { *first.base() = std::move(*i.base()); ++first; } } } el.erase(first.base(), el.end()); } template inline void associativeRemoveIncidenceEdgeIf(IncidenceIterator first, IncidenceIterator last, IncidenceList &el, Predicate &&pred) noexcept { for (auto next = first; first != last; first = next) { ++next; if (pred(*first)) { el.erase(first.base()); } } } template inline void removeUndirectedEdge(Graph &g, EdgeDescriptor e, EdgeProperty &p) noexcept { auto &outEdgeList = g.getOutEdgeList(source(e, g)); auto outEdgeIter = outEdgeList.begin(); decltype((*outEdgeIter).get_iter()) edgeIterToErase; for (; outEdgeIter != outEdgeList.end(); ++outEdgeIter) { if (&(*outEdgeIter).get_property() == &p) { edgeIterToErase = (*outEdgeIter).get_iter(); outEdgeList.erase(outEdgeIter); break; } } auto &inEdgeList = g.getOutEdgeList(target(e, g)); auto inEdgeIter = inEdgeList.begin(); for (; inEdgeIter != inEdgeList.end(); ++inEdgeIter) { if (&(*inEdgeIter).get_property() == &p) { inEdgeList.erase(inEdgeIter); break; } } g.edges.erase(edgeIterToErase); } template inline void sequenceRemoveUndirectedOutEdgeIf(Graph &g, IncidenceIterator first, IncidenceIterator last, IncidenceList &el, Predicate &&pred) noexcept { // remove_if while (first != last && !pred(*first)) { ++first; } auto i = first; bool selfLoopRemoved = false; if (first != last) { for (; i != last; ++i) { if (selfLoopRemoved) { /* With self loops, the descriptor will show up * twice. The first time it will be removed, and now it * will be skipped. */ selfLoopRemoved = false; } else if (!pred(*i)) { *first.base() = std::move(*i.base()); ++first; } else { if (source(*i, g) == target(*i, g)) { selfLoopRemoved = true; } else { // Remove the edge from the target removeIncidenceEdge(*i, g.getOutEdgeList(target(*i, g))); } // Erase the edge property g.edges.erase((*i.base()).get_iter()); } } } el.erase(first.base(), el.end()); } template inline void associativeRemoveUndirectedOutEdgeIf(Graph &g, IncidenceIterator first, IncidenceIterator last, IncidenceList &el, Predicate &&pred) noexcept { for (auto next = first; first != last; first = next) { ++next; if (pred(*first)) { if (source(*first, g) != target(*first, g)) { // Remove the edge from the target removeIncidenceEdge(*first, g.getOutEdgeList(target(*first, g))); } // Erase the edge property g.edges.erase((*first.base()).get_iter()); // Erase the edge in the source el.erase(first.base()); } } } // list/vector out_edge_list template inline void reindexEdgeList(IncidenceList &el, VertexDescriptor u) { auto ei = el.begin(); auto eEnd = el.end(); for (; ei != eEnd; ++ei) { if ((*ei).get_target() > u) { --(*ei).get_target(); } } } template inline void reindexVectorHandle(Container &container, HandleDescriptor u) { static_assert(std::is_arithmetic::value, "reindexVectorHandle"); using handle_type = ValueHandle; for (auto &vert : container) { if (ccstd::holds_alternative(vert.handle)) { auto &v = ccstd::get(vert.handle).value; if (v > u) { --v; } } } } template inline void removeVectorVertex(Graph &g, VertexDescriptor u, boost::directed_tag /*tag*/) { g._vertices.erase(g._vertices.begin() + u); auto numV = num_vertices(g); if (u != numV) { for (VertexDescriptor v = 0; v < numV; ++v) { reindexEdgeList(g.getOutEdgeList(v), u); } } } template inline void removeVectorVertex(Graph &g, VertexDescriptor u, boost::undirected_tag /*tag*/) { g._vertices.erase(g._vertices.begin() + u); VertexDescriptor numV = num_vertices(g); for (VertexDescriptor v = 0; v < numV; ++v) { reindexEdgeList(g.getOutEdgeList(v), u); } auto ei = g.edges.begin(); auto eiEnd = g.edges.end(); for (; ei != eiEnd; ++ei) { if (ei->source > u) { --ei->source; } if (ei->target > u) { --ei->target; } } } template inline void removeVectorVertex(Graph &g, VertexDescriptor u, boost::bidirectional_tag /*tag*/) { g._vertices.erase(g._vertices.begin() + u); VertexDescriptor numV = num_vertices(g); VertexDescriptor v; if (u != numV) { for (v = 0; v < numV; ++v) { reindexEdgeList(g.getOutEdgeList(v), u); } for (v = 0; v < numV; ++v) { reindexEdgeList(g.getInEdgeList(v), u); } } } template inline void removeVectorVertex(Graph &g, EdgeList & /*edges*/, VertexDescriptor u, boost::bidirectional_tag /*tag*/) { g._vertices.erase(g._vertices.begin() + u); VertexDescriptor numV = num_vertices(g); VertexDescriptor v; if (u != numV) { for (v = 0; v < numV; ++v) { reindexEdgeList(g.getOutEdgeList(v), u); } for (v = 0; v < numV; ++v) { reindexEdgeList(g.getInEdgeList(v), u); } auto ei = g.edges.begin(); auto eiEnd = g.edges.end(); for (; ei != eiEnd; ++ei) { if (ei->source > u) { --ei->source; } if (ei->target > u) { --ei->target; } } } } template inline void removeVectorOwner(Graph &g, typename Graph::vertex_descriptor u) { // might make children detached g.mObjects.erase(g.mObjects.begin() + u); auto numV = num_vertices(g); if (u != numV) { for (typename Graph::vertex_descriptor v = 0; v < numV; ++v) { reindexEdgeList(g.getChildrenList(v), u); } for (typename Graph::vertex_descriptor v = 0; v < numV; ++v) { reindexEdgeList(g.getParentsList(v), u); } } } // AddressableGraph template inline std::ptrdiff_t pathLength(typename AddressableGraph::vertex_descriptor u, const AddressableGraph &g, typename AddressableGraph::vertex_descriptor parentID = AddressableGraph::null_vertex()) noexcept { if (u == parentID) { return 0; } const auto &pmap = get(boost::vertex_name, g); std::ptrdiff_t sz = 0; while (u != parentID) { sz += static_cast(get(pmap, u).size()) + 1; u = parent(u, g); } return sz; } template inline void pathComposite( std::basic_string, Allocator> &str, std::ptrdiff_t &sz, typename AddressableGraph::vertex_descriptor u, const AddressableGraph &g, typename AddressableGraph::vertex_descriptor parentID = AddressableGraph::null_vertex()) noexcept { const auto &pmap = get(boost::vertex_name, g); while (u != parentID) { CC_EXPECTS(sz <= static_cast(str.size())); const auto &name = get(pmap, u); sz -= static_cast(name.size()) + 1; CC_ENSURES(sz >= 0); str[sz] = '/'; std::copy(name.begin(), name.end(), str.begin() + sz + 1); u = parent(u, g); } CC_ENSURES(sz == 0); } template struct ColorMap : public boost::put_get_helper> { using value_type = boost::default_color_type; using reference = boost::default_color_type &; using key_type = Key; using category = boost::lvalue_property_map_tag; ColorMap(ccstd::pmr::vector &vec) noexcept // NOLINT(google-explicit-constructor) : container{&vec} {} inline reference operator[](const key_type &v) const noexcept { return (*container)[v]; } inline reference operator()(const key_type &v) const noexcept { return operator[](v); } ccstd::pmr::vector *container{}; }; } // namespace impl } // namespace render } // namespace cc namespace std { template struct hash> { size_t operator()(const cc::render::impl::EdgeDescriptor &e) const noexcept { return boost::hash_value(e.get_property()); } }; } // namespace std